Air composition (by fraction) stays roughly the same with height: oxygen is ~20.9% of dry air at sea level and at 6,000m. What cambia is the presión barométrica,, so the number of oxygen molecules per breath reduces as you climb. The useful quantity la presión parcial de oxígeno (PO₂), drops roughly in proportion to barometric pressure, so breathing at 4,000m or 6,000m delivers far fewer oxygen molecules per litre of air than at sea level.
Because of that, desde el nivel del mar hasta los 6.000 m,, the porcentaje en volumen of O₂, N₂, CO₂ etc remains effectively the same in “dry air” (aside from water vapor changes). What sí change is the total de moléculas por litro de aire (because pressure and density decline with altitude). That means the absolute quantity of O₂ molecules decreases even though the fraction remains ~21%. This is why available oxygen to the body declines at altitude despite composition staying “21% O₂.”
Cómo responde el cuerpo
- Minutos, horas: The first response is la hiperventilación (you breathe faster and deeper) to raise alveolar oxygen; this lowers CO₂ and produces a respiratory alkalosis. Heart rate increases to maintain oxygen delivery. These fast changes partially compensate for lower PO₂ but do not fully restore sea-level oxygenation.
- Horas, días: Kidneys begin to excrete bicarbonate to offset respiratory alkalosis (renal compensation), allowing ventilation to stay high without extreme alkalosis. Oxygen saturation (SaO₂) falls with altitude in unacclimatized people; arterial PO₂ typically falls by about 1.5–1.6 kPa for each 1,000m gain.
- Días, semanas: The body increases la producción production from the kidneys creating more red blood cells (polycythemia) which raises the blood’s oxygen-carrying capacity. Microvascular and muscular changes (capillary growth, mitochondrial adjustments) also improve tissue oxygen extraction over time.
- Cambios circulatorios locales: Low oxygen triggers vasoconstricción pulmonar hipóxica (higher pulmonary artery pressure) and can worsen in susceptible people into high-altitude pulmonary edema; some people get acute mountain sickness (AMS) or, rarely, high-altitude cerebral/pulmonary edema without gradual acclimatization. Prevention is slow ascent and, when appropriate, medications and monitoring.
Because the challenge of altitude is fundamentally about the el menor volumen de aire —y por lo tanto en menos moléculas de oxígeno— que entra en los pulmones con cada respiración,una respiración efectiva se vuelve una herramienta importante para senderistas y montañistas. Técnicas como la respiración nasal constante, inhalaciones profundas controladas, ritmo equilibrado y ventilación consciente ayudan a maximizar el oxígeno que se puede extraer del aire más delgado.